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A NEW FINITE ELEMENT FOR STATIC AND DYNAMIC ANALYSIS

OF CRACKED COMPOSITE BEAMS

(Submitted to An International Journal Computers & Structures)

MAREK KRAWCZUK
Institute of Fluid Flow Machinery, Polish Academy of Sciences
80-952 Gdansk, ul.Gen. J.Fiszera 14, Poland

Abstract - A new beam finite element with a single nonpropagating one-edge open crack
located in 1its mid-length is formulated for static and dynamic analysis of cracked
composite beam-like structures. The element includes two degrees of freedoms at each of the
three nodes: a transverse deflection and an independent rotation respectively. The
exemplary numerical calculations illustrating variations of static deformations and a
fundamental bending natural frequency of composite cantilever beam caused by a single crack
are presented. The element proves to be accurate and versatile. The compatibility with
plate and shell elements as a stiffener is assured through the use of simple nodal
variables of C°-type. The presented method of creating the element makes it possible to
construct beam finite elements with other types of cracks (double-edge, internal etc.)

provided that stress intensity factors for a given type of crack are known.



A NEW FINITE ELEMENT FOR STATIC AND DYNAMIC ANALYSIS
OF CRACKED COMPOSITE BEAMS
MAREK KRAWCZUK

Institute of Fluid Flow Machinery, Polish Academy of Sciences
80-952 Gdansk, ul.Gen. J.Fiszera 14, Poland

1. INTRODUCTION

High speed machinery and lightweight structures require high strength-to-weight ratios. For
this reason, in recent years, the use of anisotropic reinforced composites, where
strength-to-weight ratios is very high, has increased substantially in the fields of
mechanical and civil engineering - see for example the textbook of Vinson and Chou [1].

Cracks occurring in structural elements are responsible for local stiffness variations
[2], which in consequence affect their dynamic characteristics. This problem has been a
subject of many papers, the review of which is given by Wauer [3], but only several papers
has been devoted the changes of the dynamic characteristics of composite constructional
elements. Adams et al. [4], found that damage in specimens fabricated from fiber reinforced
plastics could be detected by reduction in natural frequencies and an increase in damping.
Cawley and Adams [5], successfully tested the frequency measurement principle on composite
structures made in the presence of damage. Nikpour and Dimarogonas [6], presented the local
compliance matrix for wunidirectional composite materials. They have shown that the
interlocking deflection modes are enhanced as a function of the degree of anisotropy in
composites. The effect of cracks upon buckling of an edge-notched column for isotropic and
anisotropic composites has been studied by Nikpour [7]. He indicated that the instability
increases with the column slenderness and the crack length. In addition he has shown that
the material anisotropy conspicuously reduces the load-carrying capacity of an externally
cracked member. Recently, Manivasagam and Chandrasekaran [8], have presented results of
experimental investigations upon the reduction effect of the fundamental frequency of
layered composite materials with damage in the form of cracks.

In the presented paper there has been made an attempt to work out a composite beam



finite element with nonpropagating one-edge open crack. It has been assumed that the crack
changes only stiffness of the element whereas the mass of the element is unchanged. The
element has been tested by numerical calculations, the results of which has been compared
with results other investigators. The influence of the crack depth, the volume fraction of
fiber and also the angle of fiber upon changes the static deflection and the fundamental

natural frequency of the composite cantilever beam has been studied.

2. GENERAL DESCRIPTION OF THE NONCRACKED ELEMENT

The geometry of the presented element is shown in Fig.l. The element has three nodes at

x=-0.5L, 0, 0.5L. At each node there are two degrees of freedom, which are the transverse

displacements q;, d3, q; and independent rotations q,, q4, Q.

Fiber '
direction a}




Neglecting warping the displacements u,, u

- of a point of the element can be expressed

as [9]

u(x,y) = -y¢(x), (1.a)

u,(x,y) = v(x), (1.b)

where ¢(x) is the rotation and v(x) denotes the transverse displacement.

Upon differentiation, the strains in the element are obtained as

a
8)( = -y :(X) s (2,3.)
X

- o(x) . (2.0)

In the finite element method, the transverse displacement v(x) is assumed as cubic
polynomials in x, while the independent rotation ¢(x) can be expressed by quadratic
polynomials. Hence, considering only the bending in the x-y plane the variables v(x) and

¢(x) are given by the following relations

v(x) = B; + Box + Bgx? + B,x5, (3.a)

P(x) = Bg + Bex + Bx2. (3.b)

Assuming the shear strain variation to be linear as it proposed by Tessler and Dong

[10], one receives relation between constant B8, and B, in the form

hence, the transverse displacement v(x) and the independent rotation ¢(x) can be written as



v(x) = By + Byx + Baxz + B4X3: (5.a)

P(x) = Bg + Bex + 3Bux7 (5.b)

Take into account the boundary conditions at nodes of the element, the variables v(x)

and ¢(x) can be expressed in terms of the element degrees of freedom

d; 9z 493 95 Qg 2q; 493 2q5 2q, 4494 244
viX)=qq + |- — - =+ —+ —= - =[x + - + x2 + - + x3, (6.a)
L 6 3 L 6 L2 L2 L2 3L2 3L2%2 3L2
q q 2q 4q 2q
p(x) = q + i 0 o 0 3 2w i e B (6.b)
L L L2 L2 L2

Substitution relations (6.a-b) into (l.a-b) yields the displacements u,, u, of a point

of the element in the form

where N denotes the shape function matrix of the element in the form

| x  2x2 | | 4x2 i | 2x? x
wo | 21Ty 0 oty O i
2x?_ x| 2x® x| _ 4Pl ox 43 |x o2x?l2xd x|
LZ° L| 37 ~ & | I?| 3 37 |L” I?| @7 B

In the similar fashion, substitution (6.a-b) into (2.a-b) yields the strains in terms of

the element degrees of freedom as

=B ||, (9)



where B denotes the strains-nodal displacements relation matrix in the form

'y  4xy | 8xy | P o4xy y
Oit‘—fL!" R N i v
4x _1rx 1} 8x ) 2 |1 4x | x 1 |’

LZ L|L 6| LZ|" 3 L LZ L &

3. INERTIA MATRIX OF THE CRACKED ELEMENT

(10)

Because, it has been assumed that the crack occurring in the element not change the mass

of its, the inertia matrix has the same form like in the case of the noncracked one.

The inertia matrix of the noncracked element M, is calculating from the commonly known

equation, Zienkiewicz [11]

Me=pINTNdv,

v

where p is the mass density and v is the volume of the element.

Substitution (8) into (11) yields the inertia matrix of the presented element
closed form

504
sym.

21L| 42H?%+2L2

pBHL | 252 0 2016
¢ 3780 [-42L| 21H2-4L2 O | 168H2+8L2
~126( -21L 252 42L 504
21L|-10.5H2+2L2] 0 | 21H2-4L2 |-21L| 42H2+2L2

where B,H,L are dimensions of the element shown in Fig.l.

-

in the

(12)



4. STIFFNESS MATRIX OF THE CRACKED ELEMENT

The stiffness matrix K, of the finite element can be calculated by means of the

relation, Przemieniecki [12]

K, =TtClT, (13)

where T is the transformation matrix of a system of dependent nodal forces P; (i=1,6) into
the system of independent nodal forces S; (i=1,4) - see Fig.l, €' is the inverse of
flexibility matrix of the element, t denotes transpose of the matrix.

In the case of the cracked element the flexibility matrix C is represented by a sum of
the flexibility matrix of the noncracked element C° and the additional flexibility matrix

C! caused by the crack

=10 +C% (14)

5. MATRIX OF TRANSFORMATION

The matrix of transformation T is calculated using the equation of overall equilibrium
for element forces P; (i=1,6) and S; (i=1,4) - see Fig.l. The finally form of this matrix

can be presented in the following form

[1 0 o o]
0O 1 0 o0
-1 O =1L 0
t
T L#Z -1 -L/3 -1 | ? Lo
0O 0 1 o0
o 0 0 1



6. FLEXIBILITY MATRIX OF THE NONCRACKED ELEMENT

The terms of the flexibility matrix of the noncracked element C° can be determined by
inversion of the force-displacement equation, Przemieniecki [12]. For the presented element

the force-displacement equation has the form

Py ki1 kK12 ki3 Kyq kyg kyg| |ay

P, ko1 Kpp Kog Kpg Kog kKpg| |42

P3| _ |Ka1 Kaz Kaz kg Kgs Kge| [ds (16)
P, kg1 Kgp Kag kag kyg Kgg| |qa|’

Pg kgy Kgp Kz Ksg Kgs Kge| |Gs

P Ke1 Kep Koz Kea Keg keg| |96

According with Fig.l the second node of the element is constrained i.e.

dz = q4 = 0, (17

Applying the condition (17), the equation (16) can be transformed to the inversion form

-1
d: ki1 kqz kg5 Kyg Py
2| - [k21 Koz Kos ke P, (18)
ds kgy kegp Kgg Kgg Pg
96 kg1 Kez Kgs Keg Pg

Finally, the flexibility matrix of the noncracked element under a selected independent

system is

kll k12 k15 k16

k21 k22
kSl k52
kél k62

Ko
kgg
Keg

k26
k56
k66

(19)

The terms k;; are equal to terms of the stiffness matrix of the noncracked element K,

which is calculated according with the following formula, Zienkiewicz [11]



K =JBTDde, (20)

v

(]

where D denotes the stresses-strains relation matrix - see Appendix C.
Substitution (10) into (20) yields the terms of the stiffness matrix of the noncracked

element in the form

¥eg = TBHE, /3L ,

=
i
s
I

Kip = Ky = -kgq = -kgg = BHS;53/2 ,

Ky3 = kgy = kgg = kg = -8BHS;,/3L ,

Kig = kg = kg = kg = -kp3 = -k3; = k45 = -kgy = 2BHS55/3 ,

Kie = Ry = BHE /8L ;

kig = kg; = -kp5 = -kg, = -BHS3,/6 ,

Ky, = keg = BH(TH2S,,/36L + LS5,/9) ,

= k4 = kgq = BH(-2H25 /9L + L5;,/9) ,

ke = kg, = BH(HZS,;/36L - LS;,/18) ,

Ky = 16BHS54/3L ,

kg, = BH(4HZS, /9L + 4LS;3/9) ,

k3q = kg3 = 0.

where the form §11 and §33 is given in the Appendix C.



7. ADDITIONAL FLEXIBILITY MATRIX OF THE ELEMENT DUE TO THE CRACK

The terms of the additional flexibility matrix C! due to the crack are calculated making

use of the relation

) 82Ul
Cij = —_— ) (21)
8,88

where Ul is the additional elastic strain energy of the element caused by the crack, S, 55
are independent nodal forces acting on the element.

The additional elastic strain energy U! due to the presence of the crack in the analyzed

element can be expressed as a function of the stress intensity factors [6]

i=4 i=a i=4
ut = I D1Z Kp? + DwE Kn ZKIIi ¥ Dzz K | dA (22)
x| = =1 151 i=1

i=
where A is the area of the crack, K, K;; are the stress intensity factors corresponding
with two models of the crack evaluation, i denotes independent nodal forces acting on the

element, and the coefficients D;, D;, and D, are given by the following relations [6]

D; = — 0i56,,0m |- L o2 (23.2)
1, = 022 5,5, » 2

Dy = Byl (slsz] ; (23.9)

D, = O.SEulm[sl + sz] : (23.0)

The method of calculation the terms s;, s, and 613 is shown in the Appendix B. The
variations of coefficients D;, Dy, and D, versus the fiber volume fraction and the crack

angle are presented in Figs.2-4,

10
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The stress intensity factors can be expressed as a function of independent nodal forces
(Krawczuk and Ostachowicz [13], and also Krawczuk [14]). Generally, for anisotropic
materials, the stress intensity factors are not equivalent to those of isotropic bodies of
the same geometry and loading conditions, expect when the crack tips are sufficiently far
away from loading points and the edges of specimen.

For the one-edge crack the nonzero stress intensity factors in function of independent

nodal forces are equal

6S
K, = Hz {ma v, , (24.a)
B
6S
Ky = BH‘; {ma v, , (24.b)
S
Ky = — 4l Y, (24.c)
BH

12



SG
Ky = — dma v, , (24.d)
BH

where a is the crack depth, Y, and Y, are correction factors.

The correction factors Y, and Y, arise from the lack of symmetry and the deformation at
the free edges of the beam compared with an infinite plate containing a crack. These
factors are nondimensional functions of the relative depth of crack (a=a/H) and the
anisotropic constants of material which may be expressed in terms of the roots of the
characteristic equation (Appendix B). In many cases, however, the numerical analysis of
highly anisotropic materials demonstrates a very weak correlation between the material
anisotropic constants and Y-factors. Denoting these anisotropic perturbations by C;(Z), the

Y-factors for isotropic materials given by Tada et al. [15], can be expressed as

X = {tana/a 10.923 + 0.199(1-sinA)*]C, (L) /cosA , (25.a)
Y, = (1122 - 0.561a + 0.085a° + 0.18a°)A1 - a, (25.b)

where A = Ta/2.

The factor C,(g) for the edge-notched beam can be fitted by a single function [16]

C,(&) = 1.0 + 0.1(g~1) - 0.16(&-1)%2 + 0.002(L-1)3 . (26)

J EIIEZZ

where { = T - Vip (the material constants Ey;; E;p Gy, and vy, are described in
12

Appendix A).
Substitution relations (24.a-d), (25.a-b) and (26) into (22) yields the additional

flexibility matrix of the element due to the crack as

Ci1 ©12 ©13 Cig

c c c
cl = 22 C23 Cga 27)
Caz Cgg
sym, Cq4

13



where the following terms of the matrix are equal

B, P .o =
011=C13=C:33=B 1[aYZda,

2

___72mD, . -
Co2 = Cp4 = Ca4 = /= | 2 Y, da,
61ID,, 2 -
©12 = C1a T C23 T Ca T oo J: a Y, da .

The changes of integrals as a function of the relative depth of the crack, for graphite-
fiber reinforced polyimide from Appendix A (volume fraction of fiber - 107), are presented

in Fig.5.

N

[=]

TR TN S T SN N U N T O W N N U U T T T U Y T 0 A A

LOG(nondimensional flexibilities)
|
N

-4
C.|.1
-—-—-—-—:Cls
-6 LIS A L L I O O
0.0 0.2 0.4 0.6 0.8 1.0

Crack depth ratio

Fig.5
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8. NUMERICAL STUDIES
The formulation of the element have been evaluated by performing the following examples.

1. Static deflection of the noncracked composite cantilever beam

The noncracked composite cantilever beam shown in Fig.6 is subjected to bending force.

The material properties of graphite-fiber reinforced polyimide used in the analysis are

given in the Appendix A. The calculations were carried out for various values of the angle

of fiber and the volume fraction of fiber V.

H=25
A R A——— A i R -
P /// R
1,7 |a
||
g
L=600 B=50
P
Fig.6

The static deflection of the end of beam obtained by a four element model is compared

with analytical solution of Lekhnitskii [17], in Fig.7. It is noted that for all values of

the fiber volume fraction V and the fiber angle results are in excellent agreement.

15
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2. Static deflection of the cracked composite cantilever beam

The second example was carried out for the cracked composite cantilever beam with the
same material properties and dimensions like in the point 1. The nonpropagating one-edge
open crack is located 75 mm from the fixed end of the beam. The depth of the crack is
various, equal to 0.2, 0.4 and 0.6 of the height of beam, respectively. The model of the
beam contains three noncracked beam elements and one element with crack.

Fig.8 shows the relative static deflections of the end of beam as a function of the
fiber angle and the relative depth of the crack asH, for various values of the fiber volume

fraction. The relative static deflection is calculating as

fola)
£ =

r

; (28)
fnc{a‘)

where f («x) denotes the static deflection of the cracked beam as a function of the angle of

16



fiber, f..(a) denotes the static deflection of the noncracked beam as a function of the

angle of fiber, « is the angle of fiber.
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The maximum value of the relative static deflection is observed for the crack
perpendiculars to fibers of the composite. When the fiber angle increases the relative
static deflection is reduced and practically for the angle greater than 45 deg. the static
deflection (even for relatively depth crack a/H=0.4), has the same value like in the case
of the noncracked beam.

Fig.9 shows the influence of the volume fraction of fiber on the relative static
deflections of the analyzed beam. In this case, the relative static deflection of the beam

is calculating as

£.(V)
f =

7]

(29)

FoeV)

where f.(V) denotes the static deflection of the cracked beam as a function of the volume

fraction of fiber, f__V) denotes the static deflection of the noncracked beam as a

l.".lC(

function of the volume fraction of fiber, V is the volume fraction of fiber.
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The relative static deflection is strongly dependent on the volume fraction of fiber.

The maximum value is achieved at relatively higher fiber fractions (around 407%).

3. Natural frequencies of the noncracked composite cantilever beam

In this point the bending natural frequencies of the noncracked composite beam from
example 1 were determined. The calculations were carried out for various values of the
angle of fiber and the fiber volume fraction V.

The first three nondimensional bending natural frequencies obtained by a four element
model are compared with analytical solution given by Vinson and Sierakowski [18], in

Fig.10. The frequencies are normalized according with the relation

-

w =1 th / .|§u/12p , (30)

where 1 is the length of the beam, h denotes the height of the beam and w is the
dimensional natural frequency.
It is noted that for first free natural frequencies results are in satisfactory

agreement.

19
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4. Natural frequencies of the cracked composite cantilever beam

The last example is devoted to analyze the change of the bending natural f requencies of

the cracked composite beam from example 2. The calculations were carried out for various

20



value of the fiber volume fraction, the fiber angle and the depth of the crack. The model

of the beam contains three noncracked beam elements and one element with crack.
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The relative changes of the first bending natural frequency of the beam as a function of
the relative depth of crack and the angle of fiber, for several values of the volume
fraction of fiber, are shown in Fig.ll. The changes are normalized according with the

following relation

w(a)
el

r

where w.(a) denotes the first bending natural frequency of the cracked beam as a function
of the angle of fiber, w,/(«) denotes the first bending natural frequency of the noncracked
beam as a function of the angle of fiber.

The decrease of the fundamental bending natural frequency is strongest for the crack
perpendiculars to the fiber direction. When, the angle of fiber increases this effect
decreases and for the angle greater than 45 deg., the first bending natural frequency of
the cracked beam has the same value like in the case of the noncracked beam (even for
relatively depth crack - a/H=0.4).

Fig.12 shows the influence of the volume fraction of fiber on relative changes of the
first bending frequency of the analyzed beam. In this case the relative changes of the

natural frequency are calculating as

w.(V)
W, = ; (32)

nc

where (V) denotes the first bending natural frequency of the cracked beam as a function
of the volume fraction of fiber, w,./(«) denotes the first bending natural frequency of the
noncracked beam as a function of the volume fraction of fiber.

The decrease of the first bending natural frequency is a function of the volume fraction

of fiber. The maximum value is achieved at relatively higher fiber fractions (around 40%).
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9. CONCLUSIONS

The paper presents a new beam finite element with the transverse nonpropagating one-edge
open crack situated in the middle of its length. The element is versatile and can be used
for static and dynamic analysis of composite or isotropic beam-like structures. In all
cases, the results obtained with use of the element are satisfactory. The compatibility of
the element with most plate and shell elements as a stiffener is apparent due its simple
nodal variables of C°-type. The method of creating the element, makes it possible to
construct beam finite elements with various type of cracks (double-edge, internal etc.) if
the stress intensity factors for a given type of crack are known.

The crack in the cantilever composite beam causes, as it was easily be expected, a
increase of the static deflection and a reduce of the first bending natural frequency of
its. These changes are a function not only the depth of the crack (like in the case of

isotropic materials), but also the volume fraction of fiber and the angle of fiber. The



intensity of changes increases in accord with the increase of the depth of the crack. The
changes of the static deflection and the fundamental natural frequency are largest when the
volume fraction of fiber is equal to 40% and the crack is perpendicular to the fibers of
the composite. For the angle of fiber greater than 45 deg. the static deflection and the
first bending natural frequency have the similar value like in the case of the noncracked

beam, (for all values of the volume fraction of fiber).
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APPENDIX A

The properties of the graphite-fiber reinforced peolyimide composite analyzed in the

paper are assumed as follows [18]

Modulus of Elasticity: E, = 2.756 GPa, E; = 275.6 GPa,
Poisson Ratio: v, = 0.33, ve = 0.2,
Modulus of Rigidity: G, = 1.036 GPa, G; = 114.8 GPa,

Mass Density: Pm = 1600 kg/mS, p, = 1900 kg/m3,
where m denotes the matrix whereas f denotes the fiber.
The material is assumed orthotropic with respect to its axes of symmetry which lie along

and perpendicular to the direction of fibers. The gross mechanical properties of the

composite are calculated using the following formulas [18]

P =PV + ppll-v),
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E;; = Egv + E(1-v) ,

g - Ep# By # (Ep = Eg v
- = E; +E, - (E; -E_)v |’

Vi, = Vv + v (1-v)

1 +v, -v,E /E;

Von = V¥V + v_(1-V)
23 f m

— 2

1 Ve t vy o E/Ey

Gy + G, + (Gf - G )v
GIZ = Gm »
Gy + G, - (Gyp - G0V

E22

N
@20 + Vyq)

where v denotes the volume fraction of fiber.
The principal axes 1 and 2 are in the plane of the composite specimen aligned along and
perpendicular to the fibers directions.

APPENDIX B

The complex constants s; and s, in relations (20.a-c) are roots of the following

characteristic equation [19]
byys? - 2byes® + (2by, + bg)s? - 2byes + by = 0

The constant l_)ij are calculated from the following relations [19]

a’l

_ 4 202 4
11 = bym?* + (2by; + bgglm®n® + bynt

by, = bynt + (2bys + bglm?n? + bmt
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by, = (b + by, = begdm2n? + byy(m* + nt)

b16 = (—21')11 + 2b12 + beﬁ]mBn + (2b22 - 2b12 - béa)mng ’

(sal]

26 = (—Zbu + 2b12 + bbe)HBm & {szz = 2b12 = bﬁﬁ)nma »

By = 2(2by; - 4by, + 2byy - bgedm?nZ + bey(m* + n%)

where m = cosx, n = sina (o denotes the angle between geometric axes of the beam and the
material principal axes) - see Fig.l.

The terms b;; corresponds with the situation when geometric axes of the beam coincide
with material principal axes. These are related to the mechanical constants of the material

by [19]

The roots of the characteristic equation are either complex or pure imaginary and cannot
be real. Thus, the four roots separate into two sets of distinct complex conjugates. The
parameters s, and s, correspond to those with positive imaginary parts. The roots of
characteristic equation were computed with an accuracy of 10710 using Newton-Raphson method

for polynomial equations with complex roots.
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APPENDIX C

In the case of the analyzed element, the stress-strain relation matrix posses the form

(18]

i
i

Si1 ! Sie

D = | orimit o

S16 i Sbé

where [18]

S = Sym?* + 2(S;, + 2S.,)m?n? + S,,n* ,

glﬁ = (SII - Slz et 2566)m3n + (Slz - S22 + 2866)mn3 »

See = (S - 2S;, + Sy, = 25.)m?n2 + S (m* + n*) .

The terms Sij corresponding with the material principal axes are determined from the

following relations [18]
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